Developing Biomarkers for Autism Spectrum Disorder

James McPartland, Ph.D.
Associate Professor, Yale Child Study Center

McPartland Lab
Yale Developmental Disabilities Clinic
Autism Biomarkers Consortium for Clinical Trials

Biomarker Definition
A defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions.

Biomarker Objectives

• Diagnosis/screening
• Treatment response
• Stratification
 • Treatment selection
 • Enrichment

ASD Biomarkers: Scientific Goals

• Sensitive to diagnostic status
• Associated with symptoms
• Functionally specific
• Applicable across development
• Robust to variation in behavior
• Sensitive to change in clinical status

ASD Biomarkers: Practical Goals

• Viable in populations with special needs
• Cost effective
• Accessible

EEG Biomarkers

• Electrical brain activity recorded from scalp
 • At rest
 • In response to perceptual events
• Viable across range of cognitive and developmental levels
 • Non-invasive
 • Movement tolerant
• Practical
 • Cost effective
 • Accessible
• Well studied in normative social-communicative development
N170: Sensitive to Diagnostic Status

- Administration of standardized tests of facial recognition in ASD
- Increased errors among adolescents and adults with autism
- Performance correlated with N170 latency

N170 biomarker correlates with symptomatology

N170: Associated with Symptoms

- Administration of standardized tests of facial recognition in ASD
- Increased errors among adolescents and adults with autism
- Performance correlated with N170 latency

N170: Functionally Specific

- Atypical specialization for social information
- Non-specific perceptual delays; inability to specialize
- Opportunity to replicate in a younger cohort

N170: Applicable Across Development

- Lower face recognition scores in ASD
- Slowed face processing (N170) in ASD in right hemisphere

Pattern of biomarker results consistent in children and adults

N170: Functionally Specific

- Normative reading scores
- Normative specialization for letters
 - Enhanced amplitude
 - Comparable latency
 - Functionally specific association with social communication

N170: Robust to Variation in Behavior

- N170 latency modulated by gaze
 - Faster to eyes
 - Reduced attention to eyes in ASD
 - Variation in gaze could explain N170 delays
N170: Robust to Variation in Behavior
• Shorter latency to eyes in TD only
• Longer latency in ASD overall

N170 anomalies evident irrespective of gaze behavior

McPartland et al., in prep

N170: Sensitive to Change in Clinical Status
• Pivotal Response Treatment
 • Empirically-supported, naturalistic intervention
 • Preschool-aged children received 14 week course of treatment
 • Increased neural efficiency for:
 • Faces
 • Emotional expressions

N170 latency changes with clinical status

Rolison et al., in prep; Dawson et al., 2012; Ventola et al., 2013

N170: Viable ASD biomarker?
✓ Sensitive to diagnostic status
✓ Associated with symptoms
✓ Functionally specific
✓ Applicable across development
✓ Robust to variation in behavior
✓ Sensitive to change in clinical status
✓ Viable in populations with special needs
✓ Cost effective
✓ Accessible

Remaining Challenges
• Promising evidence for many biomarkers
• Limited reproducibility
 • Heterogeneity and understanding of individual differences
 • Underpowered studies
 • Methodological inconsistencies
• Reliability/practice effects not known
• Absence of normative reference
• Critical need for more rigorous approaches to develop practicable biomarkers

McPartland et al., 2004, 2011; Gries et al., 2009; O’Connor et al., 2006, 2007; Dawson et al., 2009; Senju et al., 2009; Valdizan, 2005; Kemner et al., 2006; Hileman et al., 2006, 2009, 2011; Webber et al., 2007; Senju et al., 2009; Wagner et al., 2008, 2009; Nunez et al., 2005; Apicella et al., 2010; Churches et al., 2010, 2012; Boeschoten et al., 2007; Gunji et al., 2009; Magnee et al., 2008; Wong et al., 2008, 2009, 2010; Senju et al., 2009; Akechi et al., 2010; Apicella et al., 2013; Tye et al., 2013, 2014; Khorammi et al., 2013; Tavares et al., 2016; Faja et al., 2016; Graman et al., 2016; Neuhaus et al., 2016; Shen et al., 2016; Luckhardt et al., 2017; Monteiro et al., 2017; Luyster et al., 2017; Malaia et al., 2017; Kang et al., 2017; Sysoeva et al., 2018

Next Generation Biomarker Studies
• Test well-evidenced biomarkers
• Well-characterized cohorts
• Large samples (including TD)
• Longitudinal design
• Methodological rigor
• Practical assays

Next Generation Biomarker Studies

ABC-CT: Study Design
• Multi-site, naturalistic study
 • Administrative Core: Yale Center for Clinical Investigation
 • Sites: Duke, UCLA, UW, Boston Children’s Hospital, Yale
 • Data Coordinating Core: YCCI/YC Analytical Sciences, Prometheus
 • Data Acquisition and Analysis Core: SCRI, SiStat, Duke, Yale, BCH, Penn
• 200 children with ASD and 75 with TD
 • Ages 6-11
 • IQ 60-150
• Practical assays (EEG, Eye-tracking)
• Longitudinal design (Baseline, 6 weeks, 24 weeks)
Combined effort of government, academia, and industry

Unprecedented rigor

• Regulatory (Good Clinical Practice)
• Methodological
• Statistical

Harmonized with European network (EU-AIMS)

ABC-CT: Study Design

• EEG
 • Resting EEG*
 • Visual evoked potentials
 • ERPs to faces*
 • Blood draw
 • Proband
 • Both biological parents

• Eye-tracking
 • Biological motion*
 • Activity monitoring
 • Interactive social task
 • Pupillary light reflex*
 • Static social scenes*

* EU-AIMS harmonized paradigm

ABC-CT: Biomarker Assays

ABC-CT: Clinical Measures

• Clinician administered
 • Autism Diagnostic Observation Schedule
 • Autism Diagnostic Interview – Revised
 • Vineland Adaptive Behavior Scales
 • Differential Ability Scales
 • Clinical Global Impression Scale

• Caregiver report
 • Aberrant Behavior Checklist
 • Autism Impact Measure
 • Pervasive Developmental Disorder Behavior Inventory
 • Social Responsiveness Scale – Second Edition
 • Child and Adolescent Symptom Inventory
 • ACE Family/Medical History
 • Intervention History
 • Demographics/Screening

ABC-CT: Clinical Measures

ABC-CT: Progress

ABC-CT: Interim Analysis

• Acquisition and psychometrics
 • Successful acquisition (across demographic/clinical factors)
 • EEG: 96% valid data
 • Eye-tracking: 100% valid data
 • Consistent results across sites
 • Appropriate distributional properties
 • Construct validity
 • Viability as social-communication biomarker
 • Discrimination between ASD and TD
 • Test-retest reliability (T1-T2)

ABC-CT: Interim Analysis

N170 latency to upright faces

• Replication of discriminant validity
• Evidence of test-retest reliability
• First Autism Submission to FDA Biomarker Qualification Program
Next Generation Biomarkers: Social Simulations

- Increasing realism of social-communicative assays via interactive social simulations
- Eye-tracking for gaze-contingent EEG

Naples, Wu, Mayes & McPartland, 2017

Next Generation Biomarkers: Social Simulations

- Neural marker of shared gaze
 - Elicited by reciprocal eye contact
 - Predictive of social function

Naples, Wu, Mayes & McPartland, 2017

Next Generation Biomarkers

- Expand behaviors measured
 - Posture
 - Facial expression
 - Speech
- Applying to minimally verbal individuals with ASD
 - Control for attention
 - Motion tracking
 - Video
 - Chair
 - Behavioral shaping

Next Generation Biomarkers: Imaging Interaction

- Measuring brain activity during face-to-face interactions with Hirsch Brain Function Laboratory

Next Generation Biomarkers: Molecular Markers

- Collaboration with David Matuskey, Yale PET Center
- In vivo measurement of
 - Glutamate receptor density
 - Overall synaptic density
- Adapt technique for pediatric populations

Translating Biomarkers to Care

- Behavioral treatments target social brain systems
- Using transcranial magnetic stimulation to “turn on” these circuits directly
Thank you to the individuals and families that partner with us in research!

Yale Developmental Disabilities Clinic

Danette Morrison Fred Volkmar Michele Goyette-Ewing Pamela Ventola Brianna Lewis Julie Wolf Meagan Willis Michelle Lee Kelly Powell Leah Booth Shannon Brooke Laura Kirby

McPartland Lab
www.mcp-lab.org
mcp.lab@yale.edu

Adam Naples Tatiana Winkelman Ela Jarzabez Takumi McAllister Kathryn McNaughton Simone Hasselmo Taylor Halligan Estee Hamo Arielle Belluck Shara Reimer Carter Carlos

Brianna Lewis Bela Ponjevic Erin MacDonnell Talena Day Kim Ellison Dylan Stahl Morgan McNair Max Rolison Lauren Singer Melissa Zhou Dominic Trevisan Julie Wolf Monique Staggers Nicole Wright Scott Jackson Melody Altschuler Anusha Singh Ternara Parker Chelsea Slater Armen Bagdasarov Shash Kala Emily Abel

ABC-CT
PI: James McPartland
www.asdbiomarkers.org

Admin Core
Julie Holub Helen Secow Michael King

DCC
Cynthia Brandt Jim Dziura Alyssa Gateman Leon Rozenblit

Sites
Raphael Bernier Kasia Chawarska Geraldine Dawson Susan Faja Charles Nelson Shafali Jeste Scott Johnson

DAAC
Gerhard Helleman April Levin Michael Murias Adam Naples Michael Platt Fred Shic Damla Senturk Catherine Sugar Sara Webb